2016

HEMATOLOGY RESULTS FROM EXPERIMENTAL EXPOSURE OF SANDHILL CRANES TO WEST NILE VIRUS

Glenn H. Olsen

The North American Crane Working Group provides free and open access to articles in Proceedings of the North American Crane Workshop. No additional permission is required for unrestricted use, distribution, or reproduction in any medium, provided that the original work here is properly cited. Visit http://www.nacwg.org to download individual articles or to download or purchase complete Proceedings.

© 2016 North American Crane Working Group
HEMATOLOGY RESULTS FROM EXPERIMENTAL EXPOSURE OF SANDHILL CRANES TO WEST NILE VIRUS

GLENN H. OLSEN, U.S. Geological Survey, Patuxent Wildlife Research Center, 12302 Beech Forest Road, Laurel, MD 20708, USA

West Nile virus (WNV), a Flavivirus, was introduced into New York City in 1999 (Centers for Disease Control 1999, Enserink 1999). In the past decade the virus has spread across the continental United States and southern Canada, resulting in large numbers of deaths among native bird species (Anderson et al. 1999, Calle et al. 2000). The U.S. Geological Survey (USGS) Patuxent Wildlife Research Center in Laurel, Maryland, is home to the world’s largest collection of cranes. These cranes are used for research and for reintroduction programs. As of 20 October 2016, this collection included 77 of the highly endangered whooping cranes (Grus americana) used for reintroduction programs in Wisconsin and Louisiana.

The U.S. Fish and Wildlife Service was interested in protection of the endangered captive flock of whooping cranes through preventive vaccination, but with only approximately 500 of these birds in the world, including less than 150 in captivity, there was no possibility of doing safety and vaccination-challenge studies. Sandhill cranes (G. canadensis) were chosen as a suitable surrogate species for these needed vaccination-challenge studies. Similar use of sandhill cranes as surrogates for viral research of concern to whooping cranes has occurred with the Arbovirus that causes eastern equine encephalitis (Olsen et al. 1997, Olsen et al. 2005). A killed vaccine was used to produce immunity with eastern equine encephalitis (Olsen et al. 2005). No adverse reactions were encountered when vaccinating the cranes. No clinical signs of WNV disease were seen when the cranes were given the WNV challenge. Titer and necropsy results from the vaccination trials have been previously reported (Olsen et al. 2009), and a summary of the antibody titer results is presented in Table 1. We found a significant difference in titers between vaccinated and unvaccinated cranes at 14 days post-challenge (P = 0.048, F = 5.44) (Olsen et al. 2009). The objective of this paper is to summarize hematological responses to vaccination and challenge with WNV.

We selected adult sandhill cranes (n = 12) of mixed sexes that tested negative for previous exposure to WNV as measured by antibody titers. Seven of these cranes were vaccinated in the winter with 3 doses of 0.5-ml killed WNV vaccine (Fort Dodge Laboratories, Fort Dodge, IA; mention of commercial products does not imply U.S. Government endorsement) over a 4-week period at the USGS Patuxent Wildlife Research Center. Five sandhill cranes were injected with only sterile water (Table 1). Two months after completing the vaccinations, the sandhill cranes were shipped by commercial airline to the USGS National Wildlife Health Center, Madison, Wisconsin, where a BL-3 laboratory was available for the challenge phase of this study.

Following a 2-week adjustment period, the vaccinated (n = 5) and unvaccinated (n = 5) sandhill cranes were challenged by inoculating each with a 0.1-ml subcutaneous injection of a mosquito dose (5,000 plaque-forming units) of a WNV isolate from the original outbreak in New York State. Cranes designated as controls (n = 2) each received a 0.1-ml subcutaneous inoculation of sterile water. All cranes received health examinations, including taking 5.0-ml blood samples by jugular venipuncture for antibody titers and clinical pathology before, and at regularly scheduled intervals after inoculation with WNV. All cranes were humanely euthanized and necropsied at day 42 after challenge with the WNV.

Table 1. Titers of sandhill cranes inoculated with 1 mosquito dose (5,000 pfu [plaque-forming units]) of West Nile virus, USGS National Wildlife Health Center, Madison, Wisconsin, February 2002 (modified from Olsen et al. 2009).

<table>
<thead>
<tr>
<th>Crane no.</th>
<th>Vaccinated</th>
<th>Challenged</th>
<th>Titers Day 0</th>
<th>Titers Day 14</th>
<th>Titers Day 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 003</td>
<td>Yes</td>
<td>No</td>
<td><1:5</td>
<td><1:5</td>
<td><1:160*</td>
</tr>
<tr>
<td>SC 017</td>
<td>Yes</td>
<td>No</td>
<td><1:5</td>
<td><1:5</td>
<td><1:10*</td>
</tr>
<tr>
<td>SC 001</td>
<td>Yes</td>
<td>Yes</td>
<td><1:5</td>
<td>1:10240</td>
<td>1:10240</td>
</tr>
<tr>
<td>SC 028</td>
<td>Yes</td>
<td>Yes</td>
<td><1:5</td>
<td>1:640</td>
<td>1:5120</td>
</tr>
<tr>
<td>SC 060</td>
<td>Yes</td>
<td>Yes</td>
<td><1:5</td>
<td>1:2560</td>
<td>1:2560</td>
</tr>
<tr>
<td>SC 053</td>
<td>Yes</td>
<td>Yes</td>
<td><1:5</td>
<td>1:10240</td>
<td>1:1520</td>
</tr>
<tr>
<td>SC 061</td>
<td>Yes</td>
<td>Yes</td>
<td><1:5</td>
<td>1:20480</td>
<td>1:10240</td>
</tr>
<tr>
<td>SC 113</td>
<td>No</td>
<td>Yes</td>
<td><1:5</td>
<td>1:320</td>
<td>1:2560</td>
</tr>
<tr>
<td>SC 004</td>
<td>No</td>
<td>Yes</td>
<td><1:5</td>
<td>1:320</td>
<td>1:1280</td>
</tr>
<tr>
<td>SC 041</td>
<td>No</td>
<td>Yes</td>
<td><1:5</td>
<td>1:1280</td>
<td>1:10240</td>
</tr>
<tr>
<td>SC 055</td>
<td>No</td>
<td>Yes</td>
<td><1:5</td>
<td>1:640</td>
<td>1:2560</td>
</tr>
<tr>
<td>SC 065</td>
<td>No</td>
<td>Yes</td>
<td><1:5</td>
<td>1:640</td>
<td>>1:2560</td>
</tr>
</tbody>
</table>

*Lowest titer tested.
Blood samples were collected by venipuncture of the right jugular vein (Dein 1984). Blood was placed in standard heparinized and plain blood tubes and blood smears made using the two coverslip method (Dein 1984). Blood smears were stained using Diff-Quick (American Scientific Products, mention of trade

Figure 1. Mean hematocrits (%) of vaccinated/no challenge (control), vaccinated/challenged, and no vaccine/challenged sandhill cranes post challenge. Challenged whooping cranes were given 1 mosquito dose (5,000 pfu) of West Nile virus at the USGS National Wildlife Health Center, Madison, Wisconsin, February 2002.

Figure 2. Mean white blood cell counts of vaccinated/no challenge (control), vaccinated/challenged, and no vaccine/challenged sandhill cranes. Sandhill cranes were challenged with 5,000 pfu of West Nile virus at the USGS National Wildlife Health Center, Madison, Wisconsin, February 2002.
Figure 3. Mean percent heterophils and lymphocytes in vaccinated/no challenge (control), vaccinated/challenged (V/C), and no vaccine/challenged (NV/C) sandhill cranes. Sandhill cranes were injected (challenged) with 5,000 pfu of West Nile virus at the USGS National Wildlife Health Center, Madison, Wisconsin, February 2002.

name does not imply U.S. Government endorsement). Hematocrits were obtained by centrifuging a microhematocrit tube in a high speed centrifuge and reading the percent of red blood cells (Dein 1984). Total white blood cell counts were made by the Eosinophil Unopette Method (Dein 1984) (Becton-Dickinson, Test #5877) and then corrected for the percentage of heterophils and eosinophils in the differential count read from the blood smear (Dein 1984). This study was approved by the institutional animal care and use committees at the USGS Patuxent Wildlife Research Center and the USGS National Wildlife Health Center.

Between 1 and 2 weeks post-challenge, cranes exposed to the live WNV had lower hematocrits, whether or not they were previously vaccinated as compared to unchallenged controls (Figure 1). Mean white blood cell counts in all cranes given the live WNV challenge, whether vaccinated or not, were elevated as compared to the unchallenged controls ($n = 2$). The white blood cell count elevation lasted from day 3 to day 21 (Figure 2). Even though the white blood cell counts were elevated up to 2.5 times normal or control levels, there were no distinct shifts observed between heterophils and lymphocytes (Figure 3).

The most important findings were that vaccination of sandhill cranes with commercial killed equine WNV vaccine produced quickly elevating antibody titer levels when these previously vaccinated cranes were challenged by live WNV. Cranes with experimental infections with WNV had lowered hematocrits and elevated white blood cell counts as compared to control cranes not exposed to the virus housed under similar circumstances. This elevation in total white blood cell count occurred in both previously vaccinated cranes and unvaccinated cranes.

West Nile virus is a deadly virus for young cranes. In testing vaccines on adult sandhill cranes, we found that some blood parameters were altered by exposure to the virus. White blood cell counts were the most obvious and may be used as an indicator of WNV exposure in cranes, although this elevation in white blood cell counts is non-specific to WNV. Other hematology and serum chemistry results were studied and only hematocrit, percent heterophils, and percent lymphocytes were of interest, along with the already published information (Olsen et al. 2009) on titers encountered in experimental infections. Clinical pathology results showed challenged cranes, whether vaccinated or not, had a decrease in their hematocrits and an elevation of 2.5-fold in their white blood cell counts as compared to unchallenged control sandhill cranes. This is similar to a case report of a sandhill crane with an elevated white blood cell count found during a fatal WNV infection (Hansen et al. 2008). In this study no differences were apparent in the
differential counts of heterophils and lymphocytes. Our work would suggest that a combination of white blood cell counts and antibody titers can be used to diagnose and assess the severity of WNV infections in cranes.

ACKNOWLEDGMENTS

I thank the staff of the USGS National Wildlife Health Center and especially K. Miller, V. Bochsler, L. Sileo, and D. Docherty for their help and the use of the BL-3 laboratory facilities used for the virus challenges. They were my co-authors on the paper published on challenge studies. I thank the crane crew of the USGS Patuxent Wildlife Research Center, especially B. Clauss, for help with the cranes and this project. This study was funded by grants from the Whooping Crane Conservation Association and the U.S. Fish and Wildlife Service, Region 3.

LITERATURE CITED

Key words: crane, Flavivirus, Grus canadensis, hematocrit, hematology, sandhill crane, West Nile virus, white blood cell count.

PROCEEDINGS OF THE NORTH AMERICAN CRANE WORKSHOP 13:103-106