
 
 
 
______________________________________________________________________________ 

 

2010 

 

COUNTABILITY OF SANDHILL CRANES IN AERIAL 
SURVEYS 
 
Douglas H. Johnson 

John W. Solberg 

Courtney L. Amundson 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________________________________________________________ 

 

Johnson, D. H., J. W. Solberg, and C. L. Amundson. 2010. Countability of sandhill cranes in 

aerial surveys. Proceedings of the North American Crane Workshop 11:89-97. 

______________________________________________________________________________

The North American Crane Working Group provides free and open access to articles in Proceedings of the 

North American Crane Workshop. No additional permission is required for unrestricted use, distribution, or 

reproduction in any medium, provided that the original work here is properly cited. Visit http://www.nacwg.org 

to download individual articles or to download or purchase complete Proceedings. 

© 2010 North American Crane Working Group 

PROCEEDINGS OF THE NORTH AMERICAN CRANE WORKSHOP 

http://www.nacwg.org/
http://www.nacwg.org/cranes_sandhill_whooping_articles.html
http://www.nacwg.org/publications.html
http://www.nacwg.org/
http://www.nacwg.org/publications.html


COUNTABILITY OF SANDHILL CRANES IN AERIAL SURVEYS 

DOUGLAS H. JOHNSON,1 USGS Northern Prairie Wildlife Research Center, 200 Hodson Hall, 1980 Folwell Avenue, Saint Paul, 
MN 55108, USA

JOHN W. SOLBERG, U.S. Fish and Wildlife Service, 3425 Miriam Avenue, Bismarck, ND 58501, USA
COURTNEY L. AMUNDSON, Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, 200 Hodson 

Hall, 1980 Folwell Avenue, Saint Paul, MN 55108, USA

Abstract: Aerial surveys are used to monitor populations of many wildlife species, including sandhill cranes (Grus
canadensis). In addition to the usual problems of detectability (involving both availability and perceptibility), aerial surveys
of concentrated animals are subject to countability issues; from a rapidly moving aircraft, observers cannot count or accurately
estimate the number of animals in a large group. Calibration is sometimes performed in an effort to adjust aerial counts for
incomplete detectability and countability by calculating the ratio of animals actually in a group to the number in the group
estimated from the aircraft. Here we explore alternative, model-based approaches to the analysis of those adjustment ratios
using aerial survey data of sandhill crane concentrations during 1978-2007 in the Platte River Valley of Nebraska. Ratios
varied by year and by observer. In addition, the ratio varied with the actual size of the concentration. Modeling can be used to
develop improved estimates of the ratio.
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Aerial surveys are often used to estimate or track
populations of wildlife, particularly large mammals and
birds (Caughley 1974, 1977). Large and conspicuous
animals that are widely spaced over a known area (e.g.,
wintering whooping cranes, Grus americana) pose few
if any special problems in such surveys. Typically,
aerial surveys must overcome two primary concerns:
lack of availability—animals are hidden or emit no
detectable cues, and incomplete detectability—animals
are available for detection, but the observer misses
them (e.g., Johnson 2008). A variety of design and
analytic methods have been devised to address some of
these issues, including distance sampling (Buckland et
al. 1993), multiple-observer sampling (Cook and
Jacobson 1979), and time-to-detection sampling
(Farnsworth et al. 2002, Alldredge et al. 2007).

In some situations a third issue arises, which we
term countability. If the animals are numerous,
observers may find it difficult or impossible to
enumerate all the animals during the brief pass in an
aircraft. Just as availability and detectability can be
confounded in many surveys of birds (Johnson 2008),
countability can be confounded with either of them in
an aerial survey. Problems of reduced accuracy are
likely exacerbated when groups are large, animals are
inconspicuous, or surveying conditions are suboptimal.

These conditions commonly occur during surveys of
the midcontinental population of sandhill cranes (Grus
canadensis). Accuracy of aerial surveys of birds is
highly variable, and causes of such variability are
poorly understood (Frederick et al. 2003). The
objective of this paper is to explore the variation in
countability of this surveyed population and to
determine if there are methods to improve the analysis
of survey results. The ultimate goals would be to
improve accuracy of estimates by better accounting for
countability and possibly to reduce survey effort.
Although we focus on the single situation involving
sandhill cranes along the Platte River, our results are of
greater generality.

METHODS

Of the several populations of sandhill cranes
(Meine and Archibald 1996), the mid-continental
population is by far the largest, encompassing about a
half-million birds (Sharp and Vogel 1992). Although
birds in this population breed from Siberia, through
Alaska and northern Canada, and east to Ontario and
Quebec (G. L. Krapu et al., unpublished data), their
defining characteristic is that they migrate through the
Central Plains of North America. In particular, during
their spring migration most of them stop for a period of
time in mid to late March along the north or central
Platte River valleys of central Nebraska (USFWS 1981,
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Krapu et al. 1987).
Operational surveys of sandhill cranes along the

Platte River have been conducted since 1972 (Ferguson et
al. 1979, Benning and Johnson 1987). The method first
used involved flying an aircraft along the river before
dawn, when cranes are still on their riverine roosts. Two
or 3 days were needed to survey the designated portion of
the Platte River. Problems with this survey method
included frequent poor weather and poor visibility during
the early mornings, difficulties in seeing and counting all
cranes present, and the possibility that some cranes
already may have left their roosts to feed.

A different approach was evaluated in 1978
(Ferguson et al. 1979), which involved conducting
surveys later in the day, when most of the cranes are in
fields in the valley, foraging or resting; the method is still
in use. The 2,174-km2 area of the Platte River and North
Platte River Valleys in which most of the cranes were
thought to occur in was designated the survey area. That
area was divided into 10 strata, based on similarities in
crane densities in roosts along adjacent stretches of river
during previous years.

Each stratum was divided into a number of north-
south transects, each 0.8 km  wide and of various lengths
(range 4.4-25.6 km). A systematic sampling plan was
used. About a fourth of the transects could be surveyed
operationally; thus, a random number between 1 and 4
was chosen, and that-numbered transect and every fourth
one thereafter was included in the sample. Most strata
contained 4 or 5 surveyed transects (range 3-10).

A pilot accompanied by an observer flew an aircraft
along the center line of each sampled transect. The pilot
and observer each attempted to count all sandhill cranes
on his or her side of the aircraft within 0.4 km of the
center line. Densities of cranes were computed for each
transect and projected to the entire stratum. After
multiplying the average density by the area of a stratum,
resulting estimates of population size were added across
all strata.

Observed counts cannot be expected to be exact,
for 2 reasons. First, cranes were rather cryptic,
especially under certain ground and light conditions.
Second, cranes often occurred in large flocks, making
it impossible for observers to count them from rapidly
moving aircraft. So any error reflected both imperfect
detectability and inaccuracy in counting or estimating
sizes of flocks (Fig. 1).

In an attempt to compensate mathematically for such

errors, independent data on countability were obtained.
For this endeavor, a third person in the aircraft
photographed certain flocks of cranes. Efforts were made
to photograph flocks in a range of sizes that were
representative of those observed in the operational
survey. Subsequently cranes in each flock were carefully
counted on large-format photographs. Results were
compared to the number of cranes that the pilot or
observer estimated in the flock. A goal of 50 flocks per
observer each year was established, but often not quite
met due to a variety of logistic constraints (mean per year
per observer was 41 flocks, range 23-56).  

The current adjustment for countability is design-
based; that is, only data from the photographed flocks in
a particular year are used. We explore model-based
adjustment, incorporating explanatory variables such as
observer, year, and flock size. Although distance to object
is a major influence on detectability in many surveys, it
was not recorded in this survey and was not considered
important, due to the large size of objects (sandhill
cranes) and limited maximum range (half-width of
transect, 0.4 km).

Under the current protocol, the ratio of total cranes
counted on photographs to the total estimated in the same
flocks (hereafter, Ratio) by each observer is computed.
Recorded counts are adjusted by multiplying them by this
Ratio, separately for each observer in each year. During
the 1982-2007 period, Ratios averaged 1.27 and ranged
from 0.80 to 2.32.

In general, observers tended to underestimate the size
of flocks, although errors in estimating large
concentrations can be appreciable and in either direction
(Fig. 2). Many Ratios were near 1, with a few somewhat
below 1 and a few even exceeding 2 (Fig. 3). Because of
this asymmetry, we based our analyses on the natural
logarithm of the Ratio. Here we explore 3 new
approaches to the analysis of these countability data.

A Mixed-model Approach

Our first approach involved the notion of fixed and
random effects in linear models (Littel et al. 2006). Fixed
effects are explanatory variables for which the study
includes all values of interest. Random effects are
variables for which the study includes only a portion
(ostensibly randomly chosen) of the values that the
variable can assume. For example, year typically is
treated as a random effect, because inference is desired
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Figure 1. Examples of concentrations of sandhill cranes in the Platte River Valley of Nebraska as photographed for comparison
with counts estimated from aircraft, (a) a small flock of 57 fairly detectable sandhill cranes, estimated as 55 from the aerial survey,
(b) concentration of 123 less-detectable sandhill cranes, estimated as only 75 from the aerial survey, (c) large flock of 934 readily
detectable sandhill cranes, estimated as only 400 from the aerial survey. Pen lines and check marks were used to facilitate
counting cranes on the photographs.

(a)

(b)

(c)



for more years than just the ones under study (even
though years certainly are not randomly selected).

The response variable in our models was the
logarithm of Ratio, the ratio of number of cranes counted
on a photograph (Count) to the number estimated from
the aircraft. We modeled the log of Ratio as a function of
the number of cranes counted by the observer (log
Count), year of the survey (Year, a class variable),
observer (Observer, a class variable), and the experience
of the observer (log Experience). Experience was defined
as the number of years an observer had conducted this
particular aerial survey of cranes (e.g., Experience = 1 for
an observer's first year surveying cranes). We further
tested for quadratic effects of log of the Count (log2

Count) to examine whether the log of the Ratio changed
nonlinearly with the log of crane abundance. The 6

observers who surveyed cranes in only a single year
confounded Experience and Observer effects, so we did
not consider models containing both variables; rather, we
treated those models as competing hypotheses in an
exploratory analysis. We compared 2 models that
included Year, log Count, log2 Count, and either Observer
or log Experience effects. We selected the variable
(Observer or Experience) for which the model including
that variable explained more of the variation in the
Ratios.

Observer could justifiably be treated either as a
random effect (i.e., if observers are representative of a
population of potential observers) or a fixed effect (i.e., if
interest is in only particular observers; note that the use of
the same observers in several years suggests they were
not selected randomly). Because neither assumption is
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Figure 2. Counts of sandhill cranes recorded from aerial photographs of selected flocks against the size of the flock as estimated
by observers, (a) pilot and (b) non-pilot, in 2007. Diagonal line represents perfect accord.
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strictly correct, we addressed both possibilities by
conducting 2 parallel analyses (F: Observer fixed, R:
Observer random) and comparing selected models and
coefficient estimates for each.  Year was treated as a
random effect; all other variables were treated as fixed
effects.  

An exploratory analysis revealed that Observer
effects were stronger than any Experience effect,
suggesting that the amount of experience with this
crane survey did not completely account for the
variability among observers. We next proposed 13
biologically plausible model structures a priori; these
formed our candidate model set (Table 1). We
compared models using Akaike's Information

Criterion (AIC; Burnham and Anderson 2002), so that
the model with the lowest AIC value is the one best
supported by the data. Also, ∆AIC measures the
difference between AIC values for a model under
consideration and the model with lowest AIC value.
Our sample size to parameter ratio exceeded 40, so we
did not require the AIC small-sample-size correction
in our analysis (Anderson et al. 2001, Burnham and
Anderson 2002). We assessed the importance of each
explanatory variable by examining its coefficient
estimate along with its associated 95% confidence
interval, and also by summing AIC weights of all
models that included each variable. We model-
averaged parameter estimates unless overwhelming
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1
2
3
4
5
6
7
8
9
10
11
12
13

Year + Obs + log C + log2 C + Obs • log C + Obs • log2 C          
Year + Obs + log C + log2 C + Obs*log C
Year + Obs + log C + Obs • log C
Year + Obs + log C + log2 C
Year + Obs + log C
Obs + log C + log2 C + Obs • log C + Obs • log2 C
Year + log C + log2 C
Year + log C
Obs + log C + log2 C + Obs • log C       .
Obs + log C + log C 
Obs + log C
log C + log2 C
log C  

64
52
52
41
40
39
29
28
27
15
14

3
2

Table 1. Candidate model set for estimating count bias in aerial surveys of sandhill cranes.

Model number Explanatory variables includeda Kb

a Obs represents observer; C is Count, the number of cranes estimated from aerial surveys.
b Number of parameters in the model.
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Figure 3. Ratios (number of sandhill cranes counted on photographs divided by number estimated by aerial observer, by flock,
for (a) pilot and (b) non-pilot during 2007.

 



support (defined as AIC weight > 0.9) existed for a
single model (Anderson et al. 2001).

A Bayesian Approach

Our second approach involved Bayesian hierarchical
modeling. We modeled the log of Ratio as a linear
function of the log Count, the squared log Count, Year
effects, and Observer effects. The major difference
between this Bayesian approach and the mixed-modeling
approach is that the Bayesian paradigm treats all
parameters, not just the “random” components, as having
statistical distributions. Those distributions can reflect
either uncertainty about parameters that are assumed to
be fixed, or actual variation in parameters that are not
assumed fixed.

We used “standard” objective Bayesian modeling in
which we assumed no prior knowledge of any parameter.
We used WinBUGS (Thomas 1994) to perform the
analysis. We ran 50,000 simulations on our model to
obtain parameter estimates, after discarding the initial
60,000 simulations to ensure convergence. We checked
density functions and autocorrelation plots to assess
model convergence.

An Empirical Bayes Approach

Empirical Bayes can be viewed as 1 way of
incorporating prior knowledge or information from
similar situations into an inference problem. For our
purposes, we considered a simple empirical Bayes
estimator of the form

RatioEB(t) = w • Ratio(t) + (1 - w) • Mean Ratio

where RatioEB(t) is the empirical Bayes estimator for a
particular observer in year t, Ratio(t) is the observed value
for that observer and year, Mean Ratio is the overall mean
(or mean from prior years), and w reflects the relative
precision of Ratio(t) versus Mean Ratio:

Accordingly, if Ratio(t) is a good estimator for a
particular observer and year (i.e., Var(Ratio(t)) is
small), w will be near 1 and the empirical Bayes
estimator will be nearly identical to the observed value
for that observer and year. Conversely, if Ratio(t) is

poorly estimated, the empirical Bayes estimator will
be close to the long-term mean, Mean Ratio, reflecting
a lack of confidence in the observed Ratio.

RESULTS

Observers generally tended to underestimate flock size
(all expected Ratios >1; Fig. 4). Treating observer as
random or fixed produced only slightly different best-
fitting models. The most-supported model in both analyses
indicated that the Ratio varied by Year, Observer, and a
quadratic function of log Count. In addition, treating
Observer as a random effect supported interactions
between Observer and linear (∆AIC = 0) and quadratic
(∆AIC = 1.20) effects of Count, whereas there was less
support for those interactions when Observer was treated
as a fixed effect (∆AIC = 4.3 and 5.6, respectively).

Parameter estimates were similar between the best-
supported Fixed and Random models (Table 2). The Year
coefficients ranged from -0.13 (Fixed-effects model: 1985)
to 0.24 (Random-effects model: 1995). Observer
coefficients ranged from -0.29 (Fixed-effects model:
Observer U) to 0.51 (Fixed-effects model: Observer R).

Coefficient estimates and variances for Bayesian
methods were remarkably similar to those from the mixed
models: Year estimates ranged from -0.22 (in 1995) to
+0.14 (in 1985), and Observer estimates ranged from -0.21
(Observer W) to +0.25 (Observer U). Confidence intervals
(95%) for coefficients of log Count and log2 Count did not
include 0. Predicted Ratios followed similar trends as
mixed models (Fig. 4) with observers, on average,
underestimating a representative flock size of 200 birds
(mean Ratio = 1.24), ranging from 0.92 (Observer W in
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Figure 4. Predicted values of Ratio from various models, with
model-averaged values for fixed-effects and random-effects
models.



1995) to 2.01 (Observer U in 1997).
For most years and observers, empirical Bayes

estimates were very similar to the observed Ratios (Fig. 5).
Substantial differences occurred only when the observed
ratios were rather extreme, greater than about 1.5; in those
instances the empirical Bayes estimates were shifted
noticeably toward the overall average of 1.27. The weights
reflected the fairly high precision of the observed ratios
(average variance was 0.014) in contrast to the substantial
variation among years and observers (variance = 0.108).

DISCUSSION

The spring count of sandhill cranes along the Platte

River is a valuable monitoring tool for an important
population of birds. That such a large fraction of the
entire population is present at the same time enables
managers to estimate its size much more accurately than
most populations, game or nongame. Yet, the aerial
counts of cranes in the Platte River survey are imperfect,
generally lower than actual numbers (as also found by
Frederick et al. [2003] for simulated wading birds and by
Pearse et al. [2008] for waterfowl decoys). Errors were
especially large, and unpredictable, for large flocks of
cranes. Errors, as measured by the difference between
numbers of birds in a flock counted from aerial
photographs and the numbers estimated from an aerial
survey, varied by observer, year, and size of the flock.
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Intercept
log Count
log2 Count
Year

1982
1990
2000
2007

Observer
D
S
E
B

-0.227 (0.14)
0.245 (0.05)
-0.026 (0.01)

0.011 (0.05)
-0.020 (0.05)
-0.092 (0.04)
-0.011 (0.04)

-0.150 (0.08)
-0.211 (0.08)
-0.042 (0.10)
-0.015 (0.08)

-0.436 (0.13)
0.244 (0.05)
-0.025 (0.01)

0.016 (0.05)
-0.023 (0.05)
-0.093 (0.04)
-0.010 (0.04)

-0.378 (0.12)
-0.439 (0.12)
-0.274 (0.14)
-0.218 (0.13)

-0.226 (0.13)
0.243 (0.05)
-0.026 (0.01)

0.013 (0.06)
-0.025 (0.06)
-0.110 (0.05)
-0.020 (0.05)

-0.131 (0.06)
-0.201 (0.05)
-0.035 (0.08)
-0.023 (0.05)

Table 2. Estimates of intercept and regression coefficients (standard errors in parentheses) for the best-supported models of
sandhill crane countability ratio. Years and Observers are arbitrarily selected examples.

Observer random Observer fixed Bayesian
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Figure 5. Differences between empirical Bayes estimates and observed Ratios in relation to observed Ratio.

 



This variability reduces the value of the survey counts
even as an index of population size. Fortunately,
concurrent photography of selected flocks permits an
adjustment to the observed counts to enhance their
accuracy through the use of these ratios. Current analytic
methods involve estimating this ratio separately for each
observer in each year, under conditions similar to those
occurring in the survey year. The current protocol does
not incorporate any adjustment based on flock size, but
efforts are made to sample flock sizes that are
representative of those found during the survey.

The current method is totally design-based; that is, it
is based only on data collected in a particular year by a
particular observer under a prescribed sampling design.
The major assumption is that the design is adequate.
Alternatives to design-based estimators are model-based
estimators, which rely on assumptions about the variable
of interest itself, such as how it relates to other variables.
We illustrated two approaches, mixed models and
Bayesian, to developing such models. The empirical
Bayes approach effectively combines a design-based
estimate with a model-based estimate, essentially getting
the “best of both worlds.”

The mixed-model and Bayesian approaches
generated similar results. Both Year and Observer effects
were included in the best-supported mixed models, and
95% confidence intervals for coefficient estimates in our
Bayesian analysis did not include zero, suggesting that
both variables had some influence on countability. The
ability of observers to count cranes also varied by the size
of the concentration. These results demonstrate the value
of annual countability estimates, obtaining photographs
of crane groups that vary in size and are representative of
those surveyed, and accounting for observer differences.
Coefficient estimates and predicted values were
remarkably similar for both analyses, and either mixed or
Bayesian models could be used in future analyses. The
benefit of the Bayesian approach is its ability to
incorporate prior information into the analysis, which for
long-term datasets such as this could improve precision
and reduce the number of surveys needed.

The empirical Bayes estimates were little different
from the observed Ratios, primarily because sample sizes
on which observed Ratios were based were fairly large,
averaging 41 flocks per observer and year. The only
appreciable differences between empirical Bayes
estimates and observed Ratios occurred when the latter
were extreme; the empirical Bayes procedure shifted

them toward the overall mean. A benefit of empirical
Bayes estimators is that extreme values are somewhat
discounted. Another advantage is that empirical Bayes
estimates could be generated in years in which the
number of photographed flocks was small, or even zero.

The simple empirical Bayes estimator we examined
weighted the observed Ratio, for a particular observer in
a particular year, with the overall average Ratio.
Somewhat more sophisticated estimators could be
developed by weighting the observed Ratio with a
different value. In particular, estimators from the mixed-
model or Bayesian approaches could be used to replace
the overall average Ratio. In a detailed examination of
empirical Bayes estimators for waterfowl populations
based on aerial surveys with some on-the-ground double
sampling, Johnson (1986) found that simple estimates
weighted with the mean performed virtually as well as
estimates weighted with values based on covariates.
Those results, however, may not be general.

Our objective was not to propose a particular
alternative to the estimation method currently in use.
Rather, it was to examine factors that influence
countability and to explore possibilities for improved
estimation of the mid-continental sandhill crane
population, but with potential generalization to other
situations.

In the sandhill crane example, current methods
appear satisfactory, primarily because large numbers
(averaging 41) of photographed flocks were available for
each observer in each year. If photography was
unavailable or samples were small, in any particular year,
methods discussed here would provide viable
alternatives.

With such a long-term data base available (1978-
2007), it is reasonable to ask if there is sufficient structure
in the data to improve the accuracy of adjustments or
even to permit a reduction of data collection in the future.
These changes do not seem warranted until improved
model-based estimators become available. The
alternative models we examined incorporated only non-
mechanistic explanatory variables, such as year and
observer. Without collecting data in a particular year,
determining an effect for that year would be very
difficult.  

Developing mechanistic models of countability bears
investigation. Variables that affect countability in
meaningful ways should be incorporated into the models.
For example, effects due to year probably reflect annual
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differences in ground conditions (partial snow cover
versus open ground, for example) and possibly sunlight
and cloud cover. It may be worthwhile to gather such
information during the course of future crane surveys.
Mechanistic models, which are based on realistic
processes and causal relationships, can be more useful
and general than phenomenological models, which rely
on observed associations among variables. For now,
however, it appears that accurate estimation of this
population of sandhill cranes will require some
photography to help calibrate countability.
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